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Abstract

In this paper, graphical representations for knowledge structures in the design method DESIRE for component-based design of knowledge

and multi-agent systems are presented, together with a graphical editor based on the Constraint Graph environment. Moreover, a translator is

described which translates these graphical representations to textual representations in DESIRE. The strength of the combined environment

is a powerful—yet easy-to-use—framework to support the development of knowledge-based and multi-agent systems. Finally, a mapping is

presented from DESIRE to Conceptual Graphs. This provides a unifying perspective on the knowledge representation format of DESIRE and

allows the use of conceptual graph tools to specify and maintain the knowledge representation part of a DESIRE specification.

q 2005 Elsevier B.V. All rights reserved.
1. Introduction

Most languages for knowledge acquisition, elicitation,

and reasoning result in specifications in pure text format.

Textual representation is easier for a computer program to

process. However, textual representation is not an easily

understandable form, especially for those domain experts

who are not familiar with computer programming. Visual

representation of knowledge relies on graphics rather than

text. Visual representations are more understandable and

transparent than textual representations [9].

DESIRE (DEsign and Specification of Interacting

REasoning components) is a design method used for

component-based design of knowledge and multi-agent

systems (see [4] for the underlying principles and [3] for a

case study). DESIRE supports designers during the entire

design process: from knowledge acquisition to automated

prototype generation. DESIRE uses composition of

processes and of knowledge to enhance transparency of

the system and the knowledge used therein.
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Originally, a textual knowledge representation language

was used in DESIRE that is based on order sorted predicate

logic and some extensions. In particular constructs were

introduced for the following:

† Structuring in (hierarchical) components of information

structure specifications and of knowledge specifications

† Explicit naming of information structure specification

components and knowledge base specification com-

ponents

† Complex object structures as terms, based on functions.

† The use of meta-descriptions of information structures

within (other) information structure specifications and

knowledge specifications

† The use of logical relationships (if-then implications) in

knowledge specification

Subsequently, a graphical representation method for

knowledge structures has been developed, inspired by a

number of known graphical formalisms such as semantic

networks, terminological formalisms and the conceptual

graph formalism [2,7,10,11,12,14]. Finally, starting with

[8], the relationship of the graphical representations to

conceptual graph formalism [10,11,12,14] was investigated

in more depth. One of the outcomes of the current paper is

that a translation to the conceptual graph formalism can be

made that provides a suitable unifying perspective on the

different notations, and makes it possible to use conceptual

graph tools to specify and maintain the knowledge
Knowledge-Based Systems 18 (2005) 367–378
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representation part of a DESIRE specification. In some

cases, the graphical notation of conceptual graphs has been

adapted a bit to obtain a more dedicated graphical format for

the needs as discussed above.

Constraint Graphs [6] is a concept mapping ‘meta-

language’ that allows the visual definition of any number of

target concept mapping languages. Once a target language is

defined (for example, the DESIRE’s graphical represen-

tation language) the constraint graphs program can emulate

a graphical editor for the language as though it were custom

build for the target language. This ‘custom’ graphical editor

can prevent the user from making syntactically illegal

constructs and dynamically constraints the choices of the

user to those allowed by the syntax. Constraint Graph’s

graphical environment is used to present knowledge in a

way that corresponds closely to the graphical representation

language for knowledge that is used in DESIRE. A

translator is described that bridges the gap between the

graphical representation and the textual representation

language in DESIRE.
2. Graphical knowledge representation in DESIRE

In this section, both graphical and textual representations

and their relations are presented for the specification of

knowledge structures in DESIRE [4]. Knowledge structures in

DESIRE consist of information types and knowledge bases. In

Sections 2.1 and 2.2 graphical and textual representations of

information types are discussed. In Section 2.3 representations

of knowledge bases are discussed.

2.1. Basic concepts in information types

Information types provide the ontology for the languages

used in components of the system, knowledge bases and

information links between components. In information type

specifications the following concepts are used: sorts, sub-

sorts, objects, relations, functions, references, and meta-

descriptions. For the graphical specification of information

types, the icons in Fig. 1 are used.

A sort can be viewed as a representation of a part of the

domain. The set of sorts categorizes the objects and terms of

the domain into groups. All objects used in a specification

have to be typed, i.e. assigned to a sort. Terms are either

objects, variables, or function applications. Each term

belongs to a certain sort. The specification of a function

consists of a name and information regarding the sorts that
sort relation

object

function

meta-description

information type

Fig. 1. Information types: legenda.
form the domain and the sort that forms the co-domain of

the function. The function name in combination with

instantiated function arguments forms a term. The term is

of the sort that forms the co-domain of the function.

Relations are the concepts needed to make statements.

Relations are defined on a list of arguments that belong to

certain sorts. If the list is empty, the relation is a nullary

relation, also called a propositional atom. The information

type birds is an example information type specifying sorts,

objects, functions and atoms with which some knowledge

concerning birds can be specified. The information type is

specified in Fig. 2. With information type birds it is, for

example, possible to express statements like ‘Tweety is

of the type that it prefers vegetarian food’: is_of_type

(tweety, food_preference(vegetarian)).

Note that being able to express a statement does not mean

that the statement is true, it could be false.
2.2. Compositionality of information types

Compositionality of knowledge structures is important

for the transparency and reusability of specifications. In

DESIRE two features enable compositionality with respect

to information types: information type references, and meta-

descriptions. By means of information type references it is

possible to import one (or more) information type(s) into

another. For example, information type birds above can be

used in an information type that specifies an extended

language for specifying knowledge that compares birds.

Example 1

information type compare_birds
information types birds;

relations same_type: BIRD * BIRD;

end information type

A more complex example shows how a number of

information types can be composed and extended in one

new information type: in the information type flying

objects the three information types are combined (Fig. 3).

In Fig. 4, it is shown how in such a composed information

type also additional concepts can be specified.

Textually, the information type flying objects is

specified as follows:

Example 2

information type flying_objects
information types birds, insects, machines;

sorts
WORLD_OBJECT;

sub-sorts
BIRD, INSECT, MACHINE: WORLD_OBJECT;

objects
ariane_5 : MACHINE;
pingu : BIRD;
hindenburg : WORLD_OBJECT;
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information type birds

sorts BIRD, 

DIET, 

BIRD_TYPE;

objects

tweety : BIRD; 

carnivore, 

omnivore, 

vegetarian : DIET;

functions

food_preference :      DIET–> BIRD_TYPE;

relations

can_fly: BIRD;

is_of_type : BIRD * BIRD_TYPE;

end information type

Fig. 2. Information type: birds.

flying objects

balloonflies zeppelin
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relations
zeppelin,

balloon,
flies : WORLD_OBJECT;

end information type

The second feature supporting compositional design of

information types is the meta-description representation

facility. The value of distinguishing meta-level knowledge

from object level knowledge is well recognized. For meta-

level reasoning a meta-language needs to be specified. It is

possible to specify information types that describe the meta-

language of already existing languages. As an example, a

meta-information type, called about birds, is constructed

using a meta-description of the information type birds

(Fig. 3). The meta-description of information type birds

connected to sort BIRD ATOM ensures that every atom of

information type birds is available as a term of sort BIRD

ATOM. Using information type about birds it is possible to

express that it has to be discovered whether bird Tweety can

fly (to_be_discovered(can_fly (tweety))) (Fig. 5).
insectsflying objects

machines

birds

Fig. 3. Composition of flying objects by references.
2.3. Knowledge bases

Knowledge bases express relationships between, for

example, domain specific concepts. Reasoning processes

use these relationships to derive explicit additional

information. Knowledge elements represent statements

about the domain that are considered true. A statement

can be unconditional (a general fact) or conditional (a rule).

Assume, as an example, that it fior the control of a chemical

process it is a fact that the action to increase the incoming

mass flow has to be performed. This fact is represented

graphically in Fig. 6.

The same icons are used as were used to construct

information types. As can be seen the function increase is
MACHINEINSECT

WORLD OBJECT
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Fig. 4. Flying objects.
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BIRD ATOM

to be discovered

birds

Fig. 5. Meta-descriptions: about birds.
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applied to the object incoming mass. As explained

before, a function combines its arguments to a term of its

destination sort. This is made explicit by the arrow to an

object, which is named by the term created by the function.

The relation to be performed has one argument, in this

case the term created by applying the function increase to

the object incoming mass. The complete statement in

concise form is: to_be_performed(increase (incoming_

mass)). Using this statement as a general fact means that

the statement is considered to be true.

The statement to_be_performed(increase(incoming_

mass)). is not always true. For example, it is only true if it has

been observed that the pressure is low and the temperature is
to be performed

increase

in
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m
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m
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s
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A
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T
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N

Fig. 6. General fact: the incoming mass flow has to be increased.
not high. These two statements, called the conditions, are

presented in Fig. 7. The same statements in concise form are

observation_result(pressure(low),pos) and obser-

vation_ result(temperature (high),neg).

If these two conditions are true, then as a consequence the

general fact depicted in Fig. 6 is also true. To graphically

represent this implication, the two conditions are to be

composed, the result of that composition (the antecedent) is

the first argument of the implication, the consequent is the

second. The true statement (rule) to be represented is of the

form:

(condition one AND condition two) IMPLIES

consequent

The logical connective used in this statement is the binary

relation: IMPLIES. Two sorts are introduced: the sort
AND

ANTECEDENT CONSEQUENT

IMPLIES

1 2

CONDITION CONDITION

Fig. 8. Schema for implication.
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ANTECEDENT and the sort CONSEQUENT. The first

argument of the logical relation IMPLIES is of sort

ANTECEDENT, the second of sort CONSEQUENT. The

first argument is a complex term:

condition one AND condition two

This term contains the logical connective AND which can

be expressed by introducing the function AND and the sort
AND
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Fig. 9. Kowledge base element o
CONDITION. The function AND has two arguments of sort

CONDITION which it combines into a term of sort

ANTECEDENT. The graphical representation of the knowl-

edge element (antecedent one AND antecedent two)

IMPLIES consequent can be found in Fig. 8.

The entire implication for the consequent to_be_perfor-

med(increase(incoming_mass)) can be found in Fig. 9.

In concise textual form the knowledge element in Fig. 9 is

expressed as:
IMPLIES
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Fig. 11. An example Constraint Graphs definition.
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if observation_result(pressure(low),pos)

and observation_result(temperature(high),neg)

then to_be_performed(increase(incoming_mass))

Finally, a knowledge base can reference several other

knowledge bases. The knowledge base elements of

knowledge bases to which the specification refers are

also used to deduce information (an example has been

omitted). Notice that this graphical representation is

comparable to the one that can be used in conceptual

graphs. Representing more complex logical statements in

graphical form is always not easy; for this problem no

new perspectives were found.
3. Constraint graphs

Constraint graphs is a concept mapping ‘meta-language’

that allows one to visually define any number of target

concept mapping languages. Once a target language is

defined (for example, the DESIRE knowledge representation

language) the constraint graphs program can emulate a

graphical editor for the language as though it were custom

build for the target language. This ‘custom’ graphical editor

can prevent the user making synactically illegal constructs.

Furthermore, the editor dynamically constraints user choices

to those allowed by the syntax.

In order to accommodate a large number of visual

languages, constraint graphs must make as few assumptions

about concept mapping languages as possible. To this end,

constraint graphs defines only four base components: node,

arc, context, and isa (Fig. 10). Nodes and arcs are mutually

exclusive, where nodes are the vertices from graph theory,

and arcs interconnect other components, and are analogous to

edges in graph theory. Both nodes and arcs may (or may not)

be labeled, typed, and visual distinguished by color, shape,

style, etc. Contexts are a sub-type of node and may contain a

partition of the graph. Isa arcs are a sub-type of arc and are

used by the system to define the sub-type relation: one defines

one component to the be a sub-type of another component

merely by drawing an isa arc from the sub-type to the

supertype.

Futhermore, the generality requirement of constraint

graphs dictates that arcs are not always binary, but may

also be unary or of any arbitrary arity greater than 1

(i.e. trinary and n-ary arcs are allowed). For example, the
TOP

NODE

CONTEXT BOTTOM

ARC

ISA

Fig. 10. The base type lattice for Constraint Graphs.
between relation puts a trinary arc to good use. Constraint

graphs arcs may interconnect not only nodes but other

arcs as well. This is not only useful, but necessary

because all sub-type and instance-of relations are defined

using an isa arc, arcs between arcs are required to define

the type of any arc. Finally, within constraint graphs no

hard distinctions are made between types and instances,

but rather, the object-delegation model [1] is followed

where any object can function as a class or type.

To illustrate some of the above points, Fig. 11 shows a

simple definition. Here, the fat, directed arcs are the

constraint graphs isa arcs and define carnivore and

vegetarian to be sub-types of animal, wolf as a sub-type

(or instance-of) of carnivore, and rabbit as a sub-type (or

instance-of) of vegetarian. Furthermore, the eat binary

relation (dashed arc) is defined and starts on carnivore and

terminates on animal. These terminals are important: the

components at the terminals constrain all sub-types of eat to

also terminate at some sub-type of carnivore and animal

respectively. The second eat arc is defined (by the fat isa arc

between it’s label and the first eat arc’s label) to be a sub-type

of the first eat arc. It is therefore legally drawn between wolf

and rabbit, but the editor would refuse to let it be drawn in

the reverse direction: the eat definition says that rabbits can’t

eat wolves.
4. Implementation of the translator

In Constraint Graphs, three basic types of objects exist:

nodes, arcs and contexts. The elements of the language to be

expressed in the Constraint Graphs’ environment therefore

need to be mapped onto these basic types. Table 1 below

shows the mapping between DESIRE’s knowledge elements

and nodes, arcs and contexts.

Constraint Graphs allows the user to further constrain the

language definition in by, for example, restricting the shapes

and connector types of the nodes and arcs the language

elements are mapped onto. In our case, we restrict the shape

of node Sort to a rectangle, and the shape of Object to a

diamond. Furthermore, sub-sorts, meta-descriptions and

relations will be represented as directed labeled arcs, where

the label takes the shape of an ellipse. Moreover, functions

will be depicted as directed labeled arcs as well, but the label



Table 1

Mapping between DESIRE and constraint graphs

Object Sort Subsort Meta

description

Function Relation Information

type

Knowledge base

NODE NODE ARC ARC ARC ARC CONTEXT CONTEXT

BIRD TYPE

food
preference

is of type

BIRD DIET

can fly

INF TYPE: birds

tweety carni
vore 

omni
vore 

veget 
arian

Fig. 12. Example of a DESIRE information type represented in Constraint

Graphs.
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will be a parallelogram. Finally, information types and

knowledge bases are mapped onto contexts, and the shape of

these contexts will be the default: a rectangle.

Fig. 12 below gives an impression of a specification of the

DESIRE information type birds (compare to Fig. 2) in

Constraint Graphs.

Every mature engineering discipline has handbooks to

describe successful solutions for known problems. There now

exists a software design patterns literature, e.g. [5], describing

successful solutions to common software problems. Industrial

experience has proven that patterns are a valuable technique

in software engineering problem-solving discipline. Not only

do patterns capture successful experience, they also help

improve communication among designers. They can help

new developers avoid traps and pitfalls that traditionally can

only learned by costly experience. This section uses patterns

to detail some aspects of the translator implementation. The

translator was implemented with Borland CCC under

Windows NT. To make the program more portable, only

ANSI CCC syntax is used. The implementation details that

do not relate to design patterns are omitted here.

The intent of the Interpreter pattern is to represent the

grammar of a language and interpret sentences in the

language [5], pp. 243–255). The Interpret pattern represents

each grammar rule as a class. Symbols on the right-hand side

of grammar rule are instance variables of the class. The

TerminalExpression implements an Interpret method associ-

ated with terminal symbol in the grammar. The Nontermi-

nalExpression implements the Interpret method for

nonterminal symbol in the grammar. Typically the Interpret

method of NonterminalExpression is implemented by calling

the Interpret methods of its subexpressions. The Interpret

method takes Context as an argument. The Context provides

information global to the interpreter. What the Context

should contain totally depends on what the Interpret method

intends to do.

For the translator, the class hierarchy for the Interpreter

pattern has a common abstract class Expression.

Expression declares a pure virtual Interpret method,

which will be inherited and implemented by all its

concrete subclass. It has two direct subclasses: MapEx-

pression and DesireExpression. These two classes are also

abstract classes. They act as the base classes of Constraint

Graph and DESIRE object hierarchies respectively. All

Constraint Graph expression nodes are subclasses of

MapExpression; all DESIRE expression nodes are sub-

classes of DesireExpression.

For TerminalExpression, the implementation of the

representing class is simple and straightforward. Besides
the attributes and methods needed for normal functioning, it

must implement the virtual Interpret method inherited from

base class. The Interpret method will interpret the

corresponding terminal symbol that the class represents.

For example, DESIRE has a grammar rule defining variables:

!variable::Z!variable_name ‘:’ !sort_name

This is a terminal expression. This grammar rule was

modeled as class DesireVariable shown in Listing 1.

Listing 1: Class Definition of DesireVariable

class DesireVariable: public DesireEx-
pression {

public:
...
int Interpret(Context);
...

protected:
String varName;
String sortName;

};

This class has two instance variables, variable_name and

sort_name, which correspond to the symbols appearing on the

right-hand side of its grammar rule. It also implements the

Interpret method declared in its parent class. The Interpret

method checks whether an expression is valid according to

the Context. For variables, a variable is legal if the sort is

defined. Through the Context, one can check whether
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a symbol is defined and the type of the symbol. The Interpret

method can be defined as:

Listing 2: Interpret Method of DesireVariable Class

int DesireVariable::Interpret(Context c)
{

if(c.defined(sortName) && c.typeOf
(sortName) ZZ ‘sorts’)

return 1;
else

return 0;

}

In the above code, defined and typeOf are methods defined

in Context that checks whether a symbol is defined and what

its type is.

For NonterminalExpression, as described in Gamma, et al.

[5]: ‘one such class is required for each rule

R::ZR1R2...Rn

in the grammar’.‘maintains an instance variable of type

AbstractExpression for each of the symbols R1 through Rn in

the grammar’. ‘implements an Interpret operation for

nonterminal symbols in the grammar. Interpret typically

calls itself recursively on the variables representing R1

through Rn’ [5], p. 246.

The second point, maintains an instance variable of type

AbstractExpression for each of the symbols R1 through Rn in

the grammar, deserves further explanation. At the first glance,

the sentence may seem that the authors were advocating

using class AbstractExpression as instance variables types.

But further investigating shows that is not what the authors

means.

Note the use of the word type, instead of class before

AbstractExpression. This should be taken to imply that

the instance variable is some subtype of AbstractExpres-

sion, not precisely AbstractExpression. In class-based

languages (e.g. CCC), subclassing is subtyping [1].

By subsumption, a value of type A can be viewed as a

value of a supertype B. So, if c0 is a subclass of c, then an

instance of class c0 is an instance of class c. A subtype can

be used in any place where a supertype can be used. Since

any subclass type is of its base class type, the instance

variables type can be the type of any subclasses of

AbstractExpression. For example, consider the following

grammar rule of DESIRE.
4.1. Grammar rule of knowledge base in DESIRE

knowledge_base ::Z knowledge base !kb_name

[knowledge_base_interface]

[knowledge_base_reference]

knowledge_base_contents

end knowledge base.
Knowledge_base_interface has been modeled as class

DesireKBInterface. Knowledge_base_reference has been

modeled as DesireKBRef. And Knowledge_base_contents

has been modeled as DesireKBContent. How does one

model Knowledge_base? Of course, all the instance

variables can be subsumed to DesireExpression, one could

use the DesireExpression class as the type of all instance

variables. Doing so has no run-time effect. But it has the

consequence of reducing static knowledge about the true

type of objects. So subtypes are used as the instance variable

types if the instance type information is evident from the

grammar syntax. The above grammar rule is implemented as

in Listing 3.

Listing 3: Class Definition of DesireKB

classDesireKB:publicDesireExpression {
public:

...
Interpret(Context);
...

protected:
string name;
DesireKBInterface* kbInterface;
DesireKBReference* kbReference;
DesireKBContent kbContent;

};

Each R1, R2,., Rn in the grammar rule is maintained as

an instance variable of a specific subclasse type. These can be

treated as type DesireExpression or Expression by subsump-

tion if necessary. This approach is advantageous for the

following reasons:

† The static object types of symbols in NonterminalExpres-

sion are made obvious. It is easier to relate classes to

grammar rules.

† It is more type-safe. Since the types of instance variables

are all of a specific subclasses type, not the generic

AbstractExpression, there is no need to get the instance

types at run time. While using these instance variables,

there is no need to use dynamic_cast! to get their actual

types dynamically.

† Statically specifying instance variable’s type can also

ensure objects of the wrong type cannot be set/added to

the NonterminalExpression. Therefore, the instance of

NonterminalExpression will not contain wrong types of

instance variables. The creation of NonterminalExpres-

sions will be less error-prone.

The Interpret method for NonterminalExpression calls the

Interpret method of instance variables representing R1

through Rn. For example, to check whether a symbol is

valid, the Interpret method of class DesireKB can be

implemented as in Listing 4.
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Listing 4: Interpret Method of DesireKB

int DesireKB::Interpret(Context c)
{

int ret Z1;
if(kbInterface)

ret Z ret && kbInterface-Inter
-pret(c);

if(kbReference)
ret Z ret && kbReference-Inter
-pret(c);

ret Z ret && kbContent.Interpret(c);
return ret;

}

5. Relation to conceptual graphs

In this paper, graphical notations for knowledge in

DESIRE are presented, as well as a translator which

translates specifications of these notations in a graphical

environment called Constraint Graphs to the textual

DESIRE representation. Having this graphical interface

brings the knowledge modelling in DESIRE closer to other

well-known knowledge representation languages, such as

Conceptual Graphs [10–12] because a dedicated interchange

procedure could be added to the software. The relation

between Conceptual Graphs and predicate logic is well-

known. The fact that DESIRE is vased on order sorted

predicate logic, and the possibility to represent different

meta-levels of information within DESIRE, ensures that all

knowledge represented in Conceptual Graphs can also be

represented in DESIRE. In this section a translation from

representations in DESIRE to representations in Conceptual

Graphs is defined.

A conceptual graph is a finite, connected, bipartite graph,

which consists of two kinds of nodes: concepts and

conceptual relations. Concepts are denoted by a rectangle,

with the name of the concept within this rectangle, and a

conceptual relation is represented as an ellipse, with one or

more arcs, each of which must be linked to some concept.

Fig. 13 below shows an example conceptual graph,

representing the episodic knowledge that a girl, Sue, is

eating pie fast.

When comparing conceptual graphs with the graphical

notations for DESIRE, many similarities become apparent.

For instance, DESIRE’s relations are denoted by ellipses,
AGENT

OBJE

Girl: Sue EAT

Fig. 13. An example C
like conceptual relations, and sorts appear as rectangles,

like concepts. Other elements however, are harder to

translate to a Conceptual Graph notation. Table 2 provides

an overview of the translation of DESIRE elements to

Conceptual Graphs. Part of this is discussed in some

detail.
5.1. Objects

Objects in DESIRE are instances of a sort. In

Conceptual Graphs (CG) these instances are represented

by individual concepts, i.e. concepts with an individual

marker following the concept name. For example, the

object tweety of sort BIRD in DESIRE is represented by

[BIRD: tweety] in CG. Also anonymous individuals can

be translated, e.g. the DESIRE variable X:BIRD is

translated into [BIRD: *x] of CG which means that it is

known that an individual of type BIRD exists, but it is

unknown which individual.
5.2. Functions

In DESIRE, functions group sorts together by mapping

them onto another sort. Functions can be regarded to be sub-

types of a general CG concept FUNCTION, which takes one

or more arguments and produces a result. In DESIRE

functions act as a named placeholder for an object of its

result, in which the argument(s) and the name of the function

ensure the placeholder’s uniqueness. Function food pre-

ference, for example of Fig. 2, can be represented by the

following Conceptual Graph:

[DIET]!-(ARG)!-[food_preference]-(RSLT)-

[BIRD_TYPE].
5.3. Relations

Relations in DESIRE can be classified according to their

arity. This arity determines the mapping to Conceptual

Graphs. 0-ary relations in DESIRE will have to be translated

to concepts; concepts in Conceptual Graphs form a graph in

itself, like nullary relations form a DESIRE atom in DESIRE.

Relations with an arity greater than zero can be translated into

either a conceptual relation with the same arity or a

combination of a concept and (an)other conceptual

relation(s). For example, the relation between: space *
CT

MANNER FAST

PIE

onceptual Graph.



Table 2

DESIRE, Constraint Graphs, and Conceptual Graphs

Desire element Graphical equivalent in constraint graphs Equivalent in conceptual graphs

Object Diamond Individual concept

Sort Rectangle Generic concept

Sub-sort Rectangle connected to super-sort by

instance-of arrow

Type hierarchy of concepts

Meta-description Dashed arrow from information type to sort Conceptual relation -(METALEVEL)-

Function Parallelogram Concept FUNCTION

Relation Ellipse Conceptual relation or concept and conceptual

relation(s)

Information type Context-box labeled SIG Context

Knowledge base Context box labeled KB Context

Antecedent Context-box labeled ANT Context

Consequent Context-box labeled CONS Context

NOT-context Context-box labeled NOT Negative context

Information type reference to information type Arrow between information types Context enclosed in another context

Knowledge base reference to KB Arrow between knowledge base contexts Context enclosed in another context

KB reference to information type Arrow from kb to information type Comparable to first three and last component in

a canon

Rule Arrow labelled ‘implies’ between antecedent

and consequent

Conceptual relation-(IMP)-
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brick * brick in DESIRE could be translated into the

following Conceptual Graph:

[SPACE] - (BETW) - [BRICK]

-[BRICK]

This graph is a triadic relation, which could be read as ‘a

space is between a brick and a brick’. Relation is_trave-

ling_from_to: person * origin * destination however could

be translated into the graph

[TRAVEL]-

(AGNT)-[PERSON]

(ORG)-[ORIGIN]

(DEST)-[DESTINATION]
5.4. Sub-sorts

In DESIRE, hierarchical relations between sorts are

allowed. Sub-sorts in DESIRE correspond to the type

hierarchy of concepts in Conceptual Graphs. In Conceptual

Graphs, hierarchies of both concepts and conceptual relations

are possible, but these hierarchical is-a relations are kept in a

separate semantic net from other relations that exist in the

domain.

5.5. Information types, knowledge bases, antecedents,

consequents and not-boxes

DESIRE’s information types, knowledge bases, ante-

cedents, consequents and not-contexts can be regarded as

contexts in Conceptual Graphs. Although, the graphical

DESIRE notation uses a different icons to represent these
contexts, these contexts can be represented by labelled

rectangles in Conceptual Graphs, where the labels of these

rectangles denote the type of the context (information

type, knowledge base, antecedents, consequents, and not-

boxes).
5.6. Information type and knowledge base references

In DESIRE, mechanisms exist to enable compositionality

of information types and knowledge bases: information type-

and knowledge base references, see Figs. 3 and 6. In

Conceptual Graphs, contexts that contain other contexts

represent this contain-relation by enclosing context-boxes in

other context-boxes. Therefore, the graphical DESIRE

notations for this compositionality can be translated to

Conceptual Graphs notation by placing information types in

information types and knowledge bases in knowledge bases.
5.7. Meta-descriptions

Another, different relation exists between information

types: the meta-description. A information type A in DESIRE

is said to contain a meta-description of a information type B if

information type A can be used to specify as terms the atoms

that can be specified using the vocabulary of information type

B. This means that information type A allows for expressing

statements that are at a meta-level with respect to the

language defined in information type B. The meta-description

relationship is expressed in the graphical notation as a

connection, between the meta-described information type B

to a sort in the meta-level information type A. This object-

meta-level relation between information types, adopted from

the area of meta-level architectures, provides a powerful
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expressive means to model reflective reasoning patterns. In

Conceptual Graphs, this relationship between information

types A and B could be expressed as the conceptual relation

[Information type B]-(METALEVEL)-[Information type A],

with the intended meaning that information type A is at a

meta-level with respect to information type B.

5.8. Knowledge base to information type reference

The graphical DESIRE notation for a knowledge base

referencing an information type is a connection from the

knowledge base to that information type. This connection

indicates that the knowledge base, which contains facts and

rules that hold in the application domain, uses that information

type as the vocabulary to express those facts and rules. One

could argue that a information type can be compared to the first

three parts of a cannon [11], p. 96, which is a set of four

components used to derive canonical graphs: a type hierarchy

(sorts and sub-sorts), a set of individual markers (objects), a

conformity relation (the sorts the objects belong to) and a finite

set of conceptual graphs (the graphs that are true in the

domain). The knowledge expressed in knowledge bases would

then conform to the fourth component of the canon: the set of

graphs that are true in the domain.

5.9. The implies arrow

The last candidate for comparison is the labeled arrow

‘implies’, which connects the antecedent and consequent of a

rule in the graphical DESIRE notation. This arrow can be

translated into a relation ‘IMP’, a logical operator denoting

the implication between propositions [11], p. 147. ‘IMP’ is

defined as follows:

relation IMP(x,y) is [*x] [*y] (NEG)-[[*x] (NEG)-[[*y]]].

The parameter symbols *x and *y are used to denote the

conference relations between elements in the expression.

‘IMP’ could be read as: there exists an x and a y and it is not

true that both x is true and y is not true.
6. Conclusion

In this paper, graphical representations for knowledge

structures in DESIRE [3,4] have been presented, together

with a graphical editor based on the Constraint Graph

environment [6]. Moreover, a translator has been described

which translates these graphical representations to textual

representations in DESIRE. This software environment can

be regarded as a graphical design tool for knowledge in

DESIRE, an interface which offers many advantages to a

textual interface. First, Constraint Graphs can be used to

specify knowledge structures, allowing the user to work with

a mouse, pull-down menu’s and windows instead of typing

the specification conform the textual DESIRE syntax.
Second, the graphical representation of knowledge structures

(supported by the software environment for Constraint

Graphs) offers a clear visual representation, facilitating

communication between domain expert and knowledge

engineer in the development process. The strengths of the

Constraint Graphs environment as an easy to use represen-

tation tool in combination with the DESIRE environment

allows for a powerful framework to support the development

of knowledge based or multi-agent systems.

From a historical perspective, for the development of the

graphical notations for the DESIRE knowledge represen-

tation, inspiration has been obtained from a number of

different graphical formalisms available in the literature, such

as semantic networks, terminological structures and concep-

tual graphs; e.g. [2,7,10,11,12,14]. Moreover, ideas from

meta-level architectures [13] have been used. Based on these

sources of inspiration a dedicated graphical language has been

developed. As a source of inspiration; e.g. [13]. The research

reported in this paper brings the graphical representations

bring DESIRE closer to one knowledge representation

language, Conceptual Graphs [10,11,12,14], by defining a

mapping from DESIRE to Conceptual Graphs (the other

direction was already covered). This has led to a more unifying

perspective on the DESIRE knowledge representation

formalism, and opens the possibility to use DESIRE in

connection to the knowledge representation tools of the

conceptual graph community.
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